Abstract
The start-up of two-stage, semi-continuous mesophilic anaerobic digestion (TSAD) of food waste is stabilized by altering the hydraulic retention time (HRT) and organic-loading rate (OLR). The volumetric biogas yield and composition are studied at OLR (0.25–0.50 gVS/L/d) and HRT (10, 20, 40 days) initiating at OLR 0.25 g VS/L/d and HRT of 20 and 40 days for the respective reactors. Methane (CH4) from the first stage of the two-staged reactor decreased from 18.20% to 0.06%, fostering hydrogen production in 44 days when the HRT was reduced from 20 to 10 days and OLR increased from 0.25 gVS/L/d to 0.50 gVS/L/d. During the alarming volatile fatty acids (VFA)/alkalinity ratio of 0.76, feeding to the second-stage reactor was halted until pH was restored to 7.00. The restoration of methanogens was evident by an increase in methane from 39.15% to 67.48%. A stable TSAD system produced 22.32 ± 4.16 NmL/gVS and 161.02 ± 17.72 NmL/gVS of yield in respective reactors. Thus, TSAD paves the path for multiple biofuels, i.e., H2 and CH4.
Subject
Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献