Author:
Zhu Yaqing,Wang Linlin,Zheng Kaixuan,Liu Ping,Li Wenkang,Lin Jian,Liu Wenjing,Shan Shoushui,Sun Liqin,Zhang Hailing
Abstract
Background: The collagenase encoding gene col was cloned into a pP43NMK vector and amplified in Escherichia coli JM109 cells. The shuttle vector pP43NMK was used to sub-clone the col gene to obtain the vector pP43NMK-col for the expression of collagenase in Bacillus subtilis WB600. The enzyme was characterized and the composition of the expression medium and culture conditions were optimized. Methods: The expressed recombinant enzyme was purified by ammonium sulfate, ultrafiltration, and through a nickel column. The purified collagenase had an activity of 9405.54 U/mg. Results: The recombinant enzyme exhibited optimal activity at pH 9.0 and 50 °C. Catalytic efficiency of the recombinant collagenase was inhibited by Fe3+ and Cu2+, but stimulated by Co2+, Ca2+, Zn2+, and Mg2+. The optimal conditions for its growth were at pH 7.0 and 35 °C, using 15 g/L of fructose and 36 g/L of yeast powder and peptone mixture (2:1) at 260 rpm with 11% inoculation. The maximal extracellular activity of the recombinant collagenase reached 2746.7 U/mL after optimization of culture conditions, which was 2.4-fold higher than that before optimization. Conclusions: This study is a first attempt to recombinantly express collagenase in B. subtilis WB600 and optimize its expression conditions, its production conditions, and possible scale-up.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shandong Province
Yantai Science and Technology Development Plan
Subject
Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献