Abstract
This study evaluated the effects of barley sprout on the ruminal fermentation characteristics, enteric methane emission and microbiome profiles of meat-master lambs. Twelve uncastrated lambs aged 3 months were used. They were randomly assigned to three dietary treatments: Eragrostis curvula hay as a control diet (T1), grass hay plus 25% barley sprouts (T2) and grass hay plus 50% barley sprouts (T3). Animals were fed the diet for 61 days, including 10 days of adaptation. Four animals per treatment were used to collect methane and rumen fluid. Methane emission was recorded for nine consecutive days, from day 52 to 60, using a hand-held laser detector. Rumen fluid was collected on day 61 using an esophageal stomach tube for volatile fatty acid and DNA sequencing. The sprout supplementation had significant (p < 0.05) effects on methane emission and ruminal fermentation. Significant effects on rumen fermentation were observed with regards to ammonia–nitrogen (NH3-N), acetic acid and a tendency (p < 0.0536) to increase propionic acid. Barley sprouts reduced methane gas emission, ammonia–nitrogen and the enhanced body weight of the animals. The bacteria Bacteroidota and Firmicutes were predominant among the identified phyla. In addition, there was a shift in the relative abundance of phylum among the treatments. The principal coordinate analysis showed a clear difference in microbiome among animals in T1 and those in T2 and T3. The sprout supplementation improves feed utilization efficiency by the animals. In conclusion, barley sprouts may be strategically used as a climate-smart feed resource for ruminants.
Funder
Gauteng Department of Agriculture and Rural Development
Subject
Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献