Fermentation as a Promising Tool to Valorize Rice-Milling Waste into Bio-Products Active against Root-Rot-Associated Pathogens for Improved Horticultural Plant Growth

Author:

Vaitkeviciene Ruta,Burbulis NatalijaORCID,Masiene RamuneORCID,Zvirdauskiene RenataORCID,Jakstas Valdas,Damasius Jonas,Zadeike Daiva

Abstract

In this study, water extracts from fermented (F), ultrasonicated (US), and enzyme-hydrolyzed (E) rice bran (RB) were evaluated against sixteen fungal plant stem and root-rot-associated pathogens. The effects of pre-treated RB additives on plant growth substrate (PGS) on bean and tomato seed germination, stem height and root length of seedlings, and chlorophyll concentration in plants were analyzed. The results showed that US-assisted pre-treatments did not affect protein content in RB, while 36 h semi-solid fermentation (SSF) reduced protein content by 10.3–14.8%. US initiated a 2.9- and 2-fold increase in total sugar and total phenolics (TPC) contents compared to the untreated RB (3.89 g/100 g dw and 0.61 mg GAE/g dw, respectively). Lactic acid (19.66–23.42 g/100 g dw), acetic acid (10.54–14.24 g/100g dw), propionic acid (0.40–1.72 g/100 g dw), phenolic compounds (0.82–1.04 mg GAE/g dw), among which phenolic acids, such as p-coumaric, cinnamic, sinapic, vanillic, and ferulic, were detected in the fermented RB. The RBF extracts showed the greatest growth-inhibition effect against soil-born plant pathogens, such as Fusarium, Pythium, Sclerotinia, Aspergillus, Pseudomonas, and Verticillium. Beans and tomatoes grown in RBUS+E- and RBF-supplemented PGS increased the germination rate (14–75%), root length (21–44%), and stem height (25–47%) compared to seedlings grown in PGS. The RB additives increased up to 44.6–48.8% of the chlorophyll content in both plants grown under greenhouse conditions. The results indicate that the biological potential of rice-milling waste as a plant-growth-promoting substrate component can be enhanced using solid-state fermentation with antimicrobial LABs and US processing.

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3