Author:
Zhang Jiaxiang,Fu Zhihao,Zhao Xiangying,Yao Mingjing,Li Yuchen,Liu Liping,Liu Jianjun,Tian Yanjun
Abstract
Acetoin (AC) is an important platform compound with two enantiomers (R)-AC and (S)-AC. Due to its unique spatial structure, optically pure AC has particularly high application in asymmetric synthesis. Highly optically pure AC could be produced from glucose using biofermentation technology. In this paper, we have observed that the recovered AC product from the fermentation broth containing (R)-AC was a racemic mixture. The changes of the enantiomeric excess (e.e.) of (R)-AC enantiomers in the feed solution during the recovery process were then investigated, confirming that the racemization occurs during solvent distillation. Further studies showed that high temperature is the main factor affecting the conversion of the two enantiomers, while low temperature significantly prevents this conversion reaction. Therefore, we optimized the solvent recovery process and used vacuum distillation to reduce the distillation process temperature, which effectively prevented the racemization: obtains AC products with more than 98% purity and successfully maintained the proportion of (R)-AC above 96%. To our knowledge, this is the first report on the factors affecting the enantiomeric purity in the downstream extraction process of AC production by fermentation.
Funder
Key Research and Development program of Shandong
Subject
Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science