Optimization of the Production and Characterization of an Antifungal Protein by Bacillus velezensis Strain NT35 and Its Antifungal Activity against Ilyonectria robusta Causing Ginseng Rusty Root Rot

Author:

Li Mengtao1,Tang Hao2,Li Zongyan2,Song Yu2,Chen Lin2,Ran Chao2,Jiang Yun2,Chen Changqing1

Affiliation:

1. College of Plant Protection, Jilin Agricultural University, Changchun 130118, China

2. College of Life Science, Jilin Agricultural University, Changchun 130118, China

Abstract

A biocontrol Bacillus velezensis strain, NT35, was isolated from the rhizosphere soil of ginseng, and its sterile filtrate was obtained through a 0.22 μm filter which had a significant inhibitory effect against Ilyonectria robusta, which causes rusty root rot in Panax ginseng. In order to obtain the best sterile filtrate, the medium fermentation conditions of the strain NT35 were optimized using response surface methodology (RSM), and the best composition was obtained. Therefore, the fermentation medium was composed of yeast extract powder 2.5%, cornmeal 1.5%, K2HPO4 1.5%, and (NH4)2SO4 2.5%. The optimal inoculum amount was 6%, at an initial pH value of 7.0 and culturing at 34 °C at 180 rpm. The antifungal protein 1-4-2F was obtained through precipitation via 30% (NH4)2SO4 precipitation, desalting by Sephadex G-25, ion-exchange chromatography, and gel filtration chromatography. Tricine-SDS-PAGE showed that the purified protein had a relative molecular weight of approximately 6.5 kDa. The protein 1-4-2F was relatively stable and had better antifungal activity at pH 4–10 and 20–100 °C under ultraviolet irradiation of 30 W. The amino acid sequence of protein 1-4-2F was obtained using mass spectrometry, and had 100% similarity to a hypothetical protein from B. velezensis YAU B9601-Y2 (Accession No: AFJ62117). Its molecular weight was 10.176 kDa, the isoelectric point was 9.08, and its sequence coverage reached 49%. The EC50 value of the protein 1-4-2F against I. robusta was 1.519 μg·mL−1. The mycelia morphology of I. robusta changed significantly after treatment with antifungal protein under microscopic observation; the branches of the mycelia increased, distorted, partially swelled into a spherical or elliptical shape, and even ruptured; and the cells became vacuoles.

Funder

China Agriculture Research System

Jilin Science and Technology Development Project

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

Reference33 articles.

1. Textual research and modern review on ginseng;Wang;World Chin. Med.,2017

2. First Report of Ilyonectria robusta Causing Rusty Root of Asian Ginseng in China;Lu;Plant Dis.,2015

3. Lin, C., Tsai, C.H., Chen, P.Y., Wu, C.Y., Chang, Y.L., Yang, Y.L., and Chen, Y.L. (2018). Biological control of potato common scab by Bacillus amyloliquefaciens Ba01. PLoS ONE, 13.

4. Isolation, characterization and amino acid composition of a bacteriocin produced by Bacillus methylotrophicus strain BM47;Tumbarski;Food Technol. Biotechnol.,2018

5. Research progress on the characteristics and purification methods of antibacterial substances produced by biocontrol Bacillus;Zou;Xiandai Yuanyi Contemp. Hortic.,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3