Affiliation:
1. School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
2. Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
Abstract
Foodborne prevention and treatment of hyperuricemia (HUA) has received widespread attention. Lactic acid bacteria (LAB) can improve intestinal function, while traditional medicine dandelion has the functions of detoxification and detumescence. Whether LAB fermented dandelion has any effects on HUA and the underlying mechanism is not clear. To address these questions, Lactobacillus acidophilus was selected or maximal xanthine oxidase activity. The effect of Lactobacillus acidophilus fermented dandelion (LAFD) on uric acid metabolism was evaluated by the HUA mouse model. Expression levels of UA, BUN, CRE, XOD, and inflammatory factors in serum were detected. Paraffin sections and staining were used to observe the kidney and small intestine, and mRNA expression of GLUT9, URAT1, OAT1, and ABCG2 related to uric acid metabolism were investigated. Furthermore, the intestinal flora was studied by contents of the cecum and high throughput 16S rRNA sequencing. The results showed that LAFD had a significant inhibitory effect on XOD in vitro (p < 0.01). LAFD could reduce the levels of UA, BUN, CRE, XOD, IL-1 β, IL-6, and TNF- α in serum (p < 0.05), thus inhibiting inflammatory reaction, and reducing UA by decreasing the mRNA expression of GLUT9, URAT1 in kidney and increasing the mRNA expression of OAT1 and ABCG2 in kidney and small intestine (p < 0.05). In addition, the 16S rRNA gene sequencing analysis demonstrated that LAFD treatment can help restore the imbalance of the intestinal microbial ecosystem and reverse the changes in Bacterodietes/Firmicutes, Muribaculaceae, Lachnospiraceae in mice with HUA. It is suggested that the mechanism of LAFD in treating HUA may be related to the regulation of the mRNA expressions of GLUT9, URAT1, OAT1, and ABCG2 in the kidney and small intestine, as well as the regulation of intestinal flora, which provides the experimental basis for the development of new plant fermented products.
Funder
National Natural Science Foundation of China
Subject
Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science