Ferrous-Iron-Activated Sulfite-Accelerated Short-Chain Fatty Acid Production from Waste-Activated Sludge Fermentation: Process Assessment and Underlying Mechanism

Author:

Cao Fang,Guo Xujiang,Yin Xiaoyun,Cui Zhixuan,Liu Shuli,Zhou AijuanORCID

Abstract

To break the bottlenecks of slow hydrolysis and low acid production efficiency of waste-activated sludge (WAS) in the traditional anaerobic fermentation process, this study investigated the employment of ferrous-iron (Fe(II))-activated sulfite to produce hydroxyl, sulfate, and other highly oxidizing radicals on WAS floc cracking and short-chain fatty acid (SCFAs) production during anaerobic fermentation. The effect of the dosage ratio of Fe(II)/S(IV) was also studied. Results showed that the combined pretreatment of Fe(II)-activated sulfite significantly promoted the exfoliation of extracellular polymers and the subsequent SCFAs production. The highest concentration of SCFAs reached 7326.5 mg COD/L under the optimal dosage of 1:2 for Fe(II)/S(IV), which was 1.1~2.1 times higher than that of other research groups. Meanwhile, the analysis by 3D fluorescence spectroscopy and EPR (electron paramagnetic resonance) showed that Fe(II)-activated sulfite had a synergistic effect on the rupture of sludge cells and the stripping of extracellular polymers, with SO4− and OH as the key radicals generated and being much stronger in the 1:1 and 1:2 groups. High-throughput sequencing showed that the Fe(II)-activated sulfite system significantly changed the functional microbial diversity. The anaerobic fermentation bacteria and sulfate-reducing bacteria were significantly enriched. The underlying mechanism of Fe(II)-activated sulfite oxidation and molecular ecological network of key microbiomes were unveiled.

Funder

National Natural Science Foundation of China

Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering

Central Government Guides the Special Fund Projects of Local Scientific and Technological Development

Natural Science Foundation of Youth Fund

Scientific and Technological Project of Shanxi Province

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3