Abstract
Aspartate ammonia-lyase (AAL) catalyzes the reversible conversion reactions of aspartate to fumaric acid and ammonia. In this work, Lactobacillus paracasei LpAAL gene was heterologously expressed in Escherichia coli. As well as a recombinant His-tagged LpAAL protein, a maltose-binding protein (MBP) fused LpAAL protein was used to enhance its protein solubility and expression level. Both recombinant proteins showed broad substrate specificity, catalyzing aspartic acid, fumaric acid, phenylalanine, and tyrosine to produce fumaric acid, aspartic acid, trans-cinnamic acid, and p-coumaric acid, respectively. The optimum reaction pH and temperature of LpAAL protein for four substrates were measured at 8.0 and 40 °C, respectively. The Km values of LpAAL protein for aspartic acid, fumaric acid, phenylalanine, and tyrosine as substrates were 5.7, 8.5, 4.4, and 1.2 mM, respectively. The kcat values of LpAAL protein for aspartic acid, fumaric acid, phenylalanine, and tyrosine as substrates were 6.7, 0.45, 4.96, and 0.02 s−1, respectively. Therefore, aspartic acid, fumaric acid, phenylalanine, and tyrosine are bona fide substrates for LpAAL enzyme.
Funder
Taichung Veterans General Hospital and Tunghai University Joint Research Program
National Science and Technology Council, Taiwan
Subject
Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science