Author:
Jiang Bingyi,Zhang Dongming,Hu Xiao,Söderlind Ulf,Paladino Gabriela,Gamage Shiromini,Hedenström Erik,Zhang Wennan,Arrigoni Juan,Lundgren Anders,Tuvesson Malin,Yu Chunjiang
Abstract
In order to utilize a wider range of low-grade syngas, the syngas biomethanation was studied in this work with respect to the gas–liquid mass transfer and the reactor start-up strategy. Two reactors, a continuous stirred tank (CSTR) and a bubble column with gas recirculation (BCR-C), were used in the experiment by feeding an artificial syngas of 20% H2, 50% CO, and 30% CO2 into the reactors at 55 °C. The results showed that the CH4 productivity was slightly increased by reducing the gas retention time (GRT), but was significantly improved by increasing the stirring speed in the CSTR and the gas circulation rate in the BCR-C. The best syngas biomethanation performance of the CSTR with a CH4 productivity of 22.20 mmol·Lr−1·day−1 and a yield of 49.01% was achieved at a GRT of 0.833 h and a stirring speed of 300 rpm, while for the BCR-C, the best performance with a CH4 productivity of 61.96 mmol·Lr−1·day−1 and a yield of 87.57% was achieved at a GRT of 0.625 h and a gas circulation rate of 40 L·Lr−1·h−1. The gas–liquid mass transfer capability provided by gas circulation is far superior to mechanical stirring, leading to a much better performance of low-grade syngas biomethanation in the BCR-C. Feeding H2/CO2 during the startup stage of the reactor can effectively stimulate the growth and metabolism of microorganisms, and create a better metabolic environment for subsequent low-grade syngas biomethanation. In addition, during the thermophilic biomethanation of syngas, Methanothermobacter is the dominant genus.
Funder
EU Regional Development Program
“Bao Yu Gang” Foundation for Foreign Guest Professor Program at Zhejiang University
Subject
Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献