The Influence of Trctf1 Gene Knockout by CRISPR–Cas9 on Cellulase Synthesis by Trichoderma reesei with Various Soluble Inducers

Author:

Chen Yudian1,Gao Yushan1,Wang Zancheng1,Peng Nian1,Ran Xiaoqin1,Chen Tingting1,Liu Lulu1,Li Yonghao1ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China

Abstract

Knockout of the transcriptional repressor Trctf1 is known to enhance the yield of cellulose-induced cellulase synthesis in Trichoderma reesei. However, different inducers possess distinct induction mechanisms, and the effect of Trctf1 on cellulase synthesis with soluble inducers remains unknown. To evaluate the effect of the Trctf1 gene on cellulase synthesis and develop a high-yielding cellulase strain, we established a CRISPR–Cas9 genome editing system in T. reesei Rut C30 using codon-optimized Cas9 protein and in vitro transcribed RNA. This study demonstrated that T. reesei ΔTrctf1 with the Trctf1 gene knocked out showed no statistically significant differences in cellulase, cellobiohydrolase, endoglucanase, and β−glucosidase production when induced with MGD (the mixture of glucose and sophorose). However, when induced with lactose, the activities of these enzymes increased by 20.2%, 12.4%, and 12.9%, respectively, with no statistically significant differences in β−glucosidase activity. The hydrolysis efficiency on corn stover of cellulases produced by T. reesei ΔTrctf1 under different inducers was not significantly different from that of wild-type cellulases, indicating that Trctf1 gene deletion has little effect on the cellulase cocktail. These findings contribute to a better understanding of the molecular mechanisms underlying the regulation of T. reesei cellulase synthesis by different soluble inducers, as well as the construction of high-yield cellulase gene−engineered strains.

Funder

National Natural Science Foundation of China

Chongqing Science and Technology Commission

Chongqing University of Science and Technology

Postgraduate Research and Innovation Project of Chongqing University of Science and Technology

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3