Upcycling of Whey Permeate through Yeast- and Mold-Driven Fermentations under Anoxic and Oxic Conditions

Author:

Marcus Justin Fisk,DeMarsh Timothy A.,Alcaine Samuel DavidORCID

Abstract

Dairy manufacturing generates whey by-products, many of them considered waste; others, such as whey permeate, a powder high in lactose and minerals from deproteinated whey, have unrealized potential. This study identified yeast species capable of utilizing lactose from whey permeate to produce ethanol or organic acids, and identified fungal species that reduced the acidity of whey by-products. Reconstituted whey permeate was fermented anaerobically or aerobically for 34 days, using species from Cornell University’s Food Safety Lab, Alcaine Research Group, and Omega Labs. Yeast species: Kluyveromyces marxianus, Kluyveromyces lactis, Dekkera anomala, Brettanomyces claussenii, Brettanomyces bruxellensis; mold species: Mucor genevensis and Aureobasidium pullulans. Density, pH, cell concentrations, organic acids, ethanol, and sugar profiles were monitored. Under anoxic conditions, K. marxianus exhibited the greatest lactose utilization and ethanol production (day 20: lactose non-detectable; 4.52% ± 0.02 ethanol). Under oxic conditions, D. anomala produced the most acetic acid (day 34: 9.18 ± 3.38 g/L), and A. pullulans utilized the most lactic acid, increasing the fermentate’s pH (day 34: 0.26 ± 0.21 g/L, pH: 7.91 ± 0.51). This study demonstrates that fermentation of whey could produce value-added alcoholic or organic acid beverages, or increase the pH of acidic by-products, yielding new products and increasing sustainability.

Funder

New York State Department of Agriculture and Markets

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

Reference37 articles.

1. Acid whey: Is the waste product an untapped goldmine?;Erickson;Chem. Eng. News Online,2017

2. Short communication: Composition of coproduct streams from dairy processing: Acid whey and milk permeate

3. Acid Whey pH and Nutrient Content;Sanjay Gami;Agron. Fact Sheet Ser. Fact Sheet,2016

4. Part 360: Solid Waste Management Facilities General Requirements;State,2013

5. Sales of Non-Alcoholic Beverages Grow More Than $2 Billion in 2017;Staff,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3