Enhancing Biohydrogen Production: The Role of Iron-Based Nanoparticles in Continuous Lactate-Driven Dark Fermentation of Powdered Cheese Whey

Author:

Leroy-Freitas Deborah12ORCID,Muñoz Raúl12ORCID,Martínez-Mendoza Leonardo J.12,Martínez-Fraile Cristina12,García-Depraect Octavio12ORCID

Affiliation:

1. Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain

2. Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain

Abstract

Here, a comprehensive investigation was conducted under various operational strategies aimed at enhancing biohydrogen production via dark fermentation, with a specific focus on the lactate metabolic pathway, using powdered cheese whey as a substrate. Initially, a batch configuration was tested to determine both the maximum hydrogen yield (100.2 ± 4.2 NmL H2/g CODfed) and the substrate (total carbohydrates) consumption efficiency (94.4 ± 0.8%). Subsequently, a transition to continuous operation was made by testing five different operational phases: control (I), incorporation of an inert support medium for biomass fixation (II), addition of carbon-coated, zero-valent iron nanoparticles (CC-nZVI NPs) at 100 mg/L (III), and supplementation of Fe2O3 nanoparticles at concentrations of 100 mg/L (IV) and 300 mg/L (V). The results emphasized the critical role of the support medium in stabilizing the continuous system. On the other hand, a remarkable increase of 10% in hydrogen productivity was observed with the addition of Fe2O3 NPs (300 mg/L). The analysis of the organic acids’ composition unveiled a positive correlation between high butyrate concentrations and improved volumetric hydrogen production rates (25 L H2/L-d). Moreover, the presence of iron-based NPs effectively regulated the lactate concentration, maintaining it at low levels. Further exploration of the bacterial community dynamics revealed a mutually beneficial interaction between lactic acid bacteria (LAB) and hydrogen-producing bacteria (HPB) throughout the experimental process, with Prevotella, Clostridium, and Lactobacillus emerging as the predominant genera. In conclusion, this study highlighted the promising potential of nanoparticle addition as a tool for boosting biohydrogen productivity via lactate-driven dark fermentation.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3