Cultivation of a Novel Strain of Chlorella vulgaris S2 under Phototrophic, Mixotrophic, and Heterotrophic Conditions, and Effects on Biomass Growth and Composition

Author:

Grubišić Marina1,Peremin Ines1ORCID,Djedović Elvis1,Šantek Božidar1ORCID,Ivančić Šantek Mirela1ORCID

Affiliation:

1. Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia

Abstract

Microalgal biomass is an excellent platform for producing food, feed, nutraceuticals, pharmaceuticals, and biofuels. This study aimed to investigate the effect of the trophic mode of cultivation (phototrophic, heterotrophic, and mixotrophic) on the growth and biomass composition of Chlorella vulgaris S2. The contents of lipids and carbohydrates, as well as the fatty acid composition of total lipids, were studied. The effects of the carbon-to-nitrogen ratio (C:N) and the organic carbon concentration of the growth media under mixotrophic and heterotrophic conditions were also investigated. The C:N ratio of 30 mol mol−1 favoured lipid synthesis, and the C:N ratio of 10 mol mol−1 favoured carbohydrate synthesis. Maximal lipid and biomass productivities (2.238 and 0.458 g L−1 d−1, respectively) were obtained under mixotrophic conditions at the C:N ratio of 50 mol mol−1 and glucose concentration of 50 g L−1. Fed-batch cultivation conducted in a stirrer tank bioreactor under heterotrophic growth conditions increased biomass (2.385 g L−1 d−1, respectively) and lipid (0.339 L−1 d−1) productivities ~50 and ~60 times compared to the fed-batch phototrophic cultivation, respectively. The trophic mode, growth phase, and growth medium composition significantly influenced the fatty acid composition. Under mixotrophic and heterotrophic growth conditions, lipid accumulation is associated with an increase in oleic acid (C18:1) content. Mixotrophically grown biomass of Chlorella vulgaris S2 under optimised conditions is a suitable source of lipids for biodiesel production.

Funder

Croatian Government

European Union

European Regional Development Fund—the Competitiveness and Cohesion Operational Programme

The Scientific Centre of Excellence for Marine Bioprospecting—BioProCro

Croatian Science Foundation

Biorefinery system for biofuels and biochemicals production from non-food lignocellulosic raw materials

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3