Development of Mass-Conserving Atomistic Mathematical Model for Batch Anaerobic Digestion: Framework and Limitations

Author:

Gandhi Bhushan P.12,Lag-Brotons Alfonso José1,Ezemonye Lawrence I.34,Semple Kirk T.2,Martin Alastair D.1

Affiliation:

1. Engineering Department, Lancaster University, Gillow Avenue, Lancaster LA1 4YW, UK

2. Lancaster Environment Centre, Lancaster University, Library Avenue, Lancaster LA1 4YQ, UK

3. Centre for Global Eco-Innovation Nigeria, University of Benin, Benin City PMB 300313, Edo State, Nigeria

4. Vice Chancellor’s Office, Igbinedion University Okada, Benin City PMB 0006, Edo State, Nigeria

Abstract

A variety of mathematical models have been developed to simulate the biochemical and physico-chemical aspects of the anaerobic digestion (AD) process to treat organic wastes and generate biogas. However, all these models, including the most widely accepted and implemented Anaerobic Digestion Model No.1, remain incapable of adequately representing the material balance of AD and are therefore inherently incapable of material conservation. The absence of robust mass conservation constrains reliable estimates of any kinetic parameters being estimated by regression of empirical data. To address this issue, the present work involved the development of a “framework” for a mass-conserving atomistic mathematical model which is capable of mass conservation, with a relative error in the range of machine precision value and an atom balance with a relative error of ±0.02% whilst obeying the Henry’s law and electroneutrality principle. Implementing the model in an Excel spreadsheet, the study calibrated the model using the empirical data derived from batch studies. Although the model shows high fidelity as assessed via inspection, considering several constraints including the drawbacks of the model and implementation platform, the study also provides a non-exhaustive list of limitations and further scope for development.

Funder

UK Research and Innovation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3