Microbial Characterisation of a Two-Stage Anaerobic Digestion Process for Conversion of Agri-Based Feedstock in Biogas and Long-Chain Fatty Acids in a Circular Economy Framework

Author:

Fanfoni Elisabetta1,Sinisgalli Erika2,Fontana Alessandra1ORCID,Soldano Mariangela2ORCID,Garuti Mirco2,Morelli Lorenzo1

Affiliation:

1. Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Via Stefano Leonida Bissolati 74, 26100 Cremona, Italy

2. Centro Ricerche Produzioni Animali (CRPA), Viale Timavo 43/2, 42121 Reggio Emilia, Italy

Abstract

In addition to energy recovery, the anaerobic digestion of agro-industrial byproducts can also produce different high-value-added compounds. Two-stage and single-stage reactors were compared for microbial communities’ selection and long-chain fatty acid (LCFA) accumulation to investigate which microbial genera are most linked to the production of these compounds. The microbial communities present in the two reactors’ configuration in the steady state were characterised by 16S rRNA amplicon sequencing, while LCFAs were extracted and quantified from digestate samples by gas chromatography. The results showed the differentiation of the microbially dominant families in the two setups: Defluviitaleaceae and Clostridiaceae in the acidogenic and methanogenic reactor of the two-stage reaction respectively, while Dysgonomonadaceae in the single-stage set-up. LCFA accumulation was significantly detected only in the acidogenic reactor, with palmitic (2764 mg/kg), linoleic (1795 mg/kg) and stearic (1751 mg/kg) acids as the most abundant. The dominance of Defluviitaleaceae UCG 011, along with the low abundance of the LCFA oxidiser Syntrophomonas spp. in the acidogenic reactor, could be linked to the accumulation of such compounds. Therefore, the different microbial communities shaped by the two reactors’ configuration affected the accumulation of LCFAs, indicating that the two-stage anaerobic digestion of agro-industrial byproducts was more effective than single-stage digestion.

Funder

National Recovery and Resilience Plan (NRRP), Mission 04 Component 2 Investment 1.5–NextGenerationEU

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3