Bio-Fermentation Improved Rumen Fermentation and Decreased Methane Concentration of Rice Straw by Altering the Particle-Attached Microbial Community

Author:

Xu Yao,Aung MinORCID,Sun Zhanying,Zhou Yaqi,Cheng YanfenORCID,Hao Lizhuang,Padmakumar Varijakshapanicker,Zhu Weiyun

Abstract

Bio-fermentation technology has been successfully developed for ensiling rice straw; however, its effects on the particle-attached microbial community remains unknown. Therefore, rice straw (RS) and bio-fermented rice straw (BFRS) were used as substrates for in vitro rumen fermentation to investigate the effect of bio-fermentation on particle-attached microbial community, as well as their effects on gas and methane production, fermentation products, and fiber degradation. Our results have shown that total gas production, fiber degradation, and in vitro fermentation products were significantly higher (p < 0.05) for the BFRS than the RS, while methane concentration in total gas volume was significantly lower (p < 0.05) for the BFRS than RS. Linear discriminant effect size (LefSe) analysis revealed that the relative abundance of the phyla Bacteroidetes, Fibrobacteres, Proteobacteria, and Lantisphaerae, as well as the genera Fibrobacter, Saccharofermentans, and [Eubacterium] ruminantium groups in the tightly attached bacterial community, was significantly higher (p < 0.05) for the BFRS than the RS, whereas other microbial communities did not change. Thus, bio-fermentation altered the tightly attached bacterial community, thereby improving gas production, fiber degradation, and fermentation products. Furthermore, bio-fermentation reduced methane concentration in total gas volume without affecting the archaeal community.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3