Lignocellulose Degradation and Enzymatic Hydrolysis of Soybean Incorporated Sorghum Silage Inoculated with Feruloyl-Esterase Producing Lactobacillus plantarum

Author:

Usman SamailaORCID,Li FuhouORCID,An Dong,Shou Na,Deng Jianqiang,Zhang Yixin,Guo XushengORCID,Shen YuyingORCID

Abstract

Availability of feedstock is one of the uncertainties impeding cellulosic biofuel production, and conservation of whole crop biomass as silage is a promising method to ensure year-round feedstock availability for biofuel production. This study investigated lignocellulose degradation and subsequent enzymatic hydrolysis of a 90-d sorghum silage incorporated with soybean and inoculated with Lactobacillus plantarum A1 in a three (0, 25, and 50%; soybean inclusions) by two (uninoculated and inoculated) factorial experiment. The results revealed that L. plantarum A1 inoculated silages had improved fermentation characteristics. The silages’ total N and non-fiber carbohydrate increased with L. plantarum A1 and soybean inclusion (p < 0.05). Inoculation also increased the residual water-soluble carbohydrate by 33.9% (p < 0.05). Inoculation and soybean inclusion significantly hydrolyzed the biomass’ lignocellulose, altered its morphology and microstructural matrix, increased production of ferulic acid and reduced the biomass crystallinity by 15.60% (p < 0.05). L. plantarum A1 inoculation × soybean inclusion improved glucose yield and cellulose conversion during enzymatic saccharification compared to uninoculated treatments. Therefore, incorporating soybean into sorghum silage with L. plantarum A1 inoculation enhanced fermentation quality, lignocellulose degradation and enzymatic saccharification which could serve as a sure way for sustainable year-round feedstock supply for enhanced biofuel production.

Funder

China Agricultural Research System

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3