Initial Study of Fungal Bioconversion of guishe (Agave lechuguilla Residue) Juice for Bioherbicide Activity on Model Seeds

Author:

Sánchez Robles José Humberto1,Luna Enríquez Cristina Fernanda1,Reyes Ana G.2ORCID,Cruz Requena Marisol3ORCID,Ríos González Leopoldo J.1,Morales Martínez Thelma K.1,Ascacio Valdés Juan A.4ORCID,Medina Morales Miguel A.1ORCID

Affiliation:

1. Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo 25280, Coahuila, Mexico

2. CONACYT—Centro de Investigaciones Biológicas del Noroeste, La Paz 23096, Baja California Sur, Mexico

3. Departamento de Parasitología, Universidad Autónoma Agraria Antonio Narro, Buena Vista, Saltillo 25315, Coahuila, Mexico

4. Departamento de Investigación en Alimentos, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo 25280, Coahuila, Mexico

Abstract

In agriculture, weed management is a significant concern because their uncontrolled proliferation decreases soil quality for food crops. Allelopathy is a natural phenomenon in which the activity of allelochemical compounds inhibits the germination and growth of invasive plants as a defense mechanism. Among allelochemicals are polyphenols, which may affect genetic material or crucial enzyme activities for proper physiological function. Agroindustrial residues are a vast source of polyphenolic compounds with allelochemical activity. The bagasse of Agave Lechuguilla, known as guishe, is an abundant residue in México. The guishe has been characterized before by its polyphenolic content. Based on that, a fungal bioconversion process was developed to increase the availability of the allelochemicals in the guishe juice. First, guishe juice was obtained by mechanical pressed and characterized by spectrophotometric analysis. Results showed (g/L): 5.62 flavonoids, 0.64 of hydrolyzable polyphenols, 12.67 of reducing sugars, and 23.3 total sugars. The compounds detected by HPLC-ESI-MS were pterostilbene, hydroxycaffeic, caffeoyltartaric, and 4-O-glucoside coumaric acids, considered allelopathic. After the fungal bioprocess, (+)-gallocatechin and 3,7-Dimethyl quercetin were detected as additional compounds of interest. The flavonoid and hydrolyzable polyphenol content were modified to the highest accumulation of 1.57 and 14.9 g/L at 72 h, meaning a 2.45- and 2.22-fold increase. A bioprocess guishe juice (BGJ) was obtained at the compound accumulation peak of 72 h and evaluated in an allelopathic assay on model seeds (tomato and corn). Results show that BGJ inhibits up to 96.67% of corn seeds and up to 76.6% of tomato seeds compared to positive control.

Funder

National Council of Science and Technology

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3