Effect of Flaxseed Mucilage on the Probiotic, Antioxidant, and Structural-Mechanical Properties of the Different Lactobacillus Cells

Author:

Sungatullina Alya1,Petrova Tatyana1,Kharina Maria2,Mikshina Polina23ORCID,Nikitina Elena13ORCID

Affiliation:

1. Department of Meat and Milk Technology, Faculty of Food Technology, Kazan National Research Technological University, 420015 Kazan, Russia

2. Kazan Institute of Biochemistry and Biophysics of the Kazan Scientific Center of the Russian Academy of Sciences, 420111 Kazan, Russia

3. Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia

Abstract

A positive effect of flaxseed mucilage (FSM) addition (at concentrations of 0.1, 0.2, and 0.4%) to MRS and milk whey nutrient medium on the survival, auto-aggregation, hydrophobicity, adhesive, and antioxidant properties of L. bulgaricus, L. fermentum AG8, and L. plantarum AG9 was shown. It was found that the AG 8 strain became less sensitive to 7% NaCl concentrations (the cell survival rate in the experiment with 0.4% flaxseed mucilage increased by 10% compared to the control). Cultivation in the presence of FSM led to an increase in auto-aggregation, especially in the case of AG8 (from 60 to 85%) and AG9 (from 50 to 80%) strains, and an increase in hydrophobicity was seen: for L. fermentum AG8, it was from 30% to 62–72%, for L. fermentum AG9 from 30% to 35–42%, and for L. bulgaricus from 20% to 30%. The adhesive properties of the L. fermentum AG8 and L. plantarum AG9 cells increased from 0.472 to 1 nN (nanonewton) and from 0.630 to 2.5 nN, respectively. The presence of flaxseed mucilage increased the total phenolic content in cell-free supernatants after 48 h of cultivation. The concentration of 0.1–0.2% FSM increased the OH-scavenging activity of milk whey nutrient medium cell-free supernatants of strains AG8 and AG9 by 7–10%. Flaxseed mucilage can serve as a promising bioactive additive that elevates antioxidant activity, increases the resistance and survival of Lactobacillus cells in the gastrointestinal tract, and leads to the synthesis of lipase and α-glucosidase inhibitors. The co-culture of these lactic acid bacteria in the presence of FSM and milk components in the form of whey leads to the synthesis of lipase and α-glucosidase inhibitors more than the culturing on de Man, Rogosa, and Sharpe broth.

Funder

RSF

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3