Isolation and Cultivation of Penicillium citrinum for Biological Control of Spodoptera litura and Plutella xylostella

Author:

Nguyen Hoang1,Lin Kuan-Hung2ORCID,Nguyen Thanh3,Le Hong3,Ngo Kim3,Pham Dinh3ORCID,Tran Tuyet3ORCID,Su Chia-Hung4,Barrow Colin1ORCID

Affiliation:

1. Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC 3216, Australia

2. Department of Horticulture and Biotechnology, Chinese Culture University, Taipei 11114, Taiwan

3. Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam

4. Department of Chemical Engineering, Ming Chi University of Technology, Taipei 24301, Taiwan

Abstract

Biological control agents are a promising substitute for chemical pesticides in agricultural pest management. In this study, Penicillium sp. with high pathogenicity to the agricultural pests oriental leafworm moth (Spodoptera litura) and diamondback moth (Plutella xylostella) were isolated from naturally infected insects and grown on different agricultural residues as an inexpensive substrate for their sporulation. Ten strains of Penicillium (P.01~P.10) were identified as P. citrinum based on morphological features and molecular studies, with sequence analysis using an internal transcribed spacer region. Different fungal isolates exhibited a varying degree of pathogenicity against S. litura and Pl. xylostella, and strains P.04 and P.09 showed the highest pathogenicity to S. litura, with a mortality rate of 92.13% after 7 days of treatments, while strain P.06 resulted in the highest mortality of Pl. xylostella (100%) after 6 days of treatment. Moreover, among ten isolates infected with both S. litura and P. xylostella, P.06 showed potential virulence against S. litura and Pl. xylostella, with lethal time for 50% mortality (LT50) values of 4.5 days and 3.0 days, respectively. The ten isolates showed higher virulence to Pl. xylostella than to S. litura. The agro-industrial-based medium showed efficiency for the cultivation of isolates for sporulation on an industrial scale, suggesting that the newly isolated P. citrinum is a potential biological control agent for controlling insect pests and could be further developed for microbial pesticide production.

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Statins—From Fungi to Pharmacy;International Journal of Molecular Sciences;2023-12-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3