Algal Hydrogen Production and Exopolysaccharide Patterns in Chlorella–Bacillus Inter-Kingdom Co-Cultures

Author:

Hupp Bettina12ORCID,Huszár Gabriella1,Farkas Attila1,Maróti Gergely13ORCID

Affiliation:

1. Institute of Plant Biology, Biological Research Center, Eötvös Loránd Research Network (ELKH), Temesvári Krt. 62., H-6726 Szeged, Hungary

2. Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary

3. Department of Water Sciences, University of Public Service, H-6500 Baja, Hungary

Abstract

Biohydrogen production from wastewater using eukaryotic green algae can be facilitated by appropriately selected bacterial partners and cultivation conditions. Two Chlorella algal species were chosen for these experiments, based on their robust growth ability in synthetic wastewater. The applied three Bacillus bacterial partners showed active respiration and efficient biomass production in the same synthetic wastewater. Bacillus amyloliquefaciens, Bacillus mycoides, and Bacillus cereus as bacterial partners were shown to specifically promote algal biomass yield. Various inter-kingdom co-culture combinations were investigated for algal–bacterial biomass generation, for co-culture-specific exopolysaccharide patterns, and, primarily, for algal biohydrogen evolution. Chlorella sp. MACC-38 mono- and co-cultures generated significantly higher biomass compared with that of Chlorella sp. MACC-360 mono- and co-cultures, while in terms of hydrogen production, Chlorella sp. MACC-360 co-cultures clearly surpassed their Chlorella sp. MACC-38 counterparts. Imaging studies revealed tight physical interactions between the algal and bacterial partners and revealed the formation of co-culture-specific exopolysaccharides. Efficient bacterial respiration was in clear correlation with algal hydrogen production. Stable and sustainable algal hydrogen production was observed in synthetic wastewater for Chlorella sp. MACC-360 green algae in co-cultures with either Bacillus amyloliquefaciens or Bacillus cereus. The highest algal hydrogen yields (30 mL H2 L−1 d−1) were obtained when Chlorella sp. MACC-360 was co-cultured with Bacillus amyloliquefaciens. Further co-culture-specific algal biomolecules such as co-cultivation-specific exopolysaccharides increase the valorization potential of algal–bacterial co-cultures and might contribute to the feasibility of algal biohydrogen production technologies.

Funder

Lendület-Programme (GM) of the Hungarian Academy of Sciences

National Laboratory for Water Science and Water Security

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

Reference61 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3