Creating Value from Acidogenic Biohydrogen Fermentation Effluents: An Innovative Approach for a Circular Bioeconomy That Is Acquired via a Microbial Biorefinery-Based Framework

Author:

Sekoai Patrick T.1ORCID,Chunilall Viren12,Ezeokoli Obinna3ORCID

Affiliation:

1. Biorefinery Industry Development Facility, Council for Scientific and Industrial Research, Durban 4041, South Africa

2. Discipline of Chemical Engineering, University of KwaZulu-Natal, Durban 4041, South Africa

3. Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa

Abstract

As a response to the environmental and societal issues that emanate from the high reliance on fossil fuels, the world is now transitioning toward a circular bioeconomy. Acidogenic biohydrogen production is envisaged as a clean fuel of the future due to its non-polluting features and affordability. The major encumbrance for the industrialization of this process is due to the accumulation of metabolic inhibitors (volatile fatty acids (VFAs)), which lower the H2 yields. This review discusses novel methods that can be adopted to valorize the acidogenic VFAs via a “cascade microbial biorefinery-based” approach that enables this process to be economically feasible as it leads to the concomitant production of diverse high-value-added products. The work also elucidates the key setpoint parameters governing the recovery of VFAs during the acidogenic H2 process. It further explores the recent advances in the use of VFAs in microbial biorefineries. Finally, the paper provides some recommendations that might help develop acidogenic microbial biorefineries in the future. Studies focusing on microbial biorefineries tailored towards the valorization/beneficiation of acidogenic VFAs are very scarce in the literature. This work aims to provide new insights into microbial biorefinery-based processes involving the use of acidogenic VFAs as substrates.

Funder

Council for Scientific and Industrial Research—Biorefinery Industry Development Facility

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3