Biosynthesis of Silver Nanoparticles from Fermented Bush Tea (Athrixia phylicoides DC) Leaf Extract and Evaluation of Their Antioxidant and Antimicrobial Properties

Author:

Mashau Mpho Edward1ORCID,Mamagau Theshano1,Foforane Kgethego1ORCID,Nethathe Bono1,Ramphinwa Maanea Lonia2,Mudau Fhatuwani Nixwell3

Affiliation:

1. Department of Food Science and Technology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa

2. Department of Plant and Soil Sciences, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa

3. School of Agricultural, Earth and Environmental Sciences, University of Kwa-Zulu Natal, Pietermaritzburg 033, South Africa

Abstract

Green synthesis is a promising strategy for producing eco-friendly, non-toxic, and less expensive metallic nanoparticles from plants and microorganisms. This research synthesized silver nanoparticles (AgNPs) from fermented leaf extract of bush tea (Athrixia phylicoides DC). The physicochemical characterization of AgNPs was conducted by UV-vis spectroscopy, Fourier Transform Infrared Spectrometry (FTIR), and Differential Scanning Calorimetry (DSC). In addition, the total phenolic and flavonoid contents, antioxidant and antimicrobial activities of AgNPs were evaluated. The results indicated the successful formation of AgNPs by a visual change of color in fermented bush tea leaf extract from black to brown and in unfermented bush tea leaf crude extract from dark brown to light brown. The UV-vis spectrum of the reaction of the mixture of synthesized AgNPs with unfermented and fermented bush tea showed maximum absorbance at 457 nm and 450 nm, which confirmed the formation of AgNPs. FTIR revealed the functional groups of a leaf extract from bush tea that contributed to the reduction and capping process. The thermal properties suggest that low thermal stable compounds contributed to the reduction of Ag+ to Ag° in the phyto compounds found in the extract. The total phenolic content was higher in fermented AgNPs (290.44 mg/g GAE) compared to unfermented AgNPs (171.34 mg/g GAE). On the other hand, the total flavonoid content was higher in unfermented AgNPs (17.87 mg/g CE) than in fermented AgNPs (9.98 mg/g CE). Regarding antioxidant activity values, unfermented AgNPs had the highest FRAP (535.30 TE/mL) and 47.58% for DPPH. Fermented AgNPs had more antimicrobial activity than unfermented AgNPs. The results show that bush tea leaf extract can be used in different industries such as food, cosmetics, and biomedical.

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

Reference71 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3