Advances in the Application of Quorum Sensing to Regulate Electrode Biofilms in Bioelectrochemical Systems

Author:

Wang Shen1,Zhuang Xinglei1,Dong Weiliang1,Xin Fengxue1ORCID,Jia Honghua1,Wu Xiayuan1

Affiliation:

1. College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China

Abstract

Bioelectrochemical systems (BESs) are an emerging technology for wastewater treatment and resource recovery. These systems facilitate electron transfer between microorganisms and electrodes, enabling their application in various fields, such as electricity production, bioremediation, biosensors, and biocatalysis. However, electrode biofilms, which play a critical role in BESs, face several challenges (e.g., a long acclimation period, low attached biomass, high electron transfer resistance, and poor tolerance and stability) that limit the development of this technology. Quorum sensing (QS) is a communication method among microorganisms that can enhance the performance of BESs by regulating electrode biofilms. QS regulation can positively impact electrode biofilms by enhancing extracellular electron transfer (EET), biofilm formation, cellular activity, the secretion of extracellular polymeric substances (EPS), and the construction of microbial community. In this paper, the characteristics of anode electrogenic biofilms and cathode electrotrophic biofilms in BESs, EET mechanisms, and the main factors affecting biofilm formation were summarized. Additionally, QS regulation mechanisms for biofilm formation, strategies for enhancing and inhibiting QS, and the application of QS regulation for electrode biofilms in BESs were systematically reviewed and discussed. This paper provides valuable background information and insights for future research and development of BES platforms based on QS regulation of electrode biofilms.

Funder

National Key Research and Development Program of China

Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Undergraduates’ Platform for Innovation and Entrepreneurship Training Program of Nanjing Tech University

European Union

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3