Sediment Microbial Fuel Cells with Algae-Assisted Cathodes for Electricity Generation and Bio-Treatment of Sewage Sludge

Author:

Chen Lizheng1,Zhang Hongyi1,Li Yongqi1,Zhao Chunxia1,Liu Ling1,Li Lipin2,Sun Li3,Li Hui1

Affiliation:

1. Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China

2. State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China

3. School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300130, China

Abstract

In this study, an algal–bacterial symbiotic consortium was integrated with the sediment microbial fuel cell (SMFC) to construct an algal–bacterial cathode SMFC (AC-SMFC) for excess sewage sludge treatment and electricity generation. A bacterial cathode SMFC (BC-SMFC) and a static settling system (SS-system) were used as controls. Electrochemical analysis confirmed that the algal–bacterial biofilm on the cathode improved electricity production. The maximum power density of AC-SMFC was 75.21 mW/m2, which was 65.70% higher than that of the BC-SMFC (45.39 mW/m2). After 60 days of treatment, AC-SMFC achieved much higher removal efficiencies of the total chemical oxygen demand (TCOD) (59.60%), suspended solids (SS) (62.42%), and volatile suspended solids (VSS) (71.44%) in the sediment, compared to BC-SMFC and the SS-system, exhibiting an effective degradation of the organic matter in the sediment sludge. Moreover, the lower concentration of total nitrogen (TN) and total phosphorus (TP) in the overlying water of AC-SMFC demonstrated that the algae on the cathode could inhibit the accumulation of nitrogen and phosphorus released from the sediments. The three-dimensional excitation–emission matrix (EEM) fluorescence spectroscopy revealed that the tryptophan protein and aromatic protein in the loosely bound extracellular polymeric substances (LB-EPS) of the sediment sludge in the AC-SMFC were significantly decreased. Additionally, the abundance of functional microbiota in the AC-SMFC increased, such as Trichococcus, Alphaproteobacteria, and Clostridia, which contributed to electricity generation and sludge degradation. The combined application of microalgae and the SMFC provided a promising approach for excess sludge reduction and energy recovery.

Funder

State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology

Natural Science of Hebei University

Hebei Province

Hebei Province Science Foundation for Youths

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3