Abstract
Kefir is traditionally produced by fermenting cow’s milk using kefir grains as a starter culture. As the viability of microbes within kefir grains is limited and preparing the grains for kefir fermentation is laborious, here, a single starter that ferments lactose and produces ethanol is developed. For this purpose, it is important to isolate yeasts that can ferment lactose and subsequently produce alcohol. This study aimed to isolate and identify yeasts from kefir and characterise their ability as single starters to produce kefir. Based on morphological and physiological evaluations, 15 presumptive yeast isolates were obtained, 10 of which grew well on lactose-containing media. Those that were able to grow on lactose using only carbon sources were subjected to molecular identification based on the internal transcribed spacer (ITS) of the 5.8 rDNA using PCR technology. Molecular identification confirmed four isolates—namely, KFA 3, KFA 7, KFA 9 and KFB 1—as belonging to Kluyveromyces marxianus. The batch fermentation data of these strains were fitted on a logistic model to obtain the carrying capacity coefficients and strain performances were compared. The kinetic modelling revealed that KFA 9 had the highest values for the carrying capacity coefficient, biomass yield and product yield, indicating that, among the four K. marxianus strains, this was superior due to its relatively fast growth and good ethanol productivity.
Subject
Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献