Challenges in Expression and Purification of Functional Fab Fragments in E. coli: Current Strategies and Perspectives

Author:

Patil Rucha S.,Anupa AnupaORCID,Gupta Jaya A.,Rathore Anurag S.ORCID

Abstract

Microbial host systems remain the most efficient and cost-effective chassis for biotherapeutics production. Escherichia coli is often the preferred host due to ease of cloning, scale-up, high product yields, and most importantly, cost-effective cultivation. E. coli often experience difficulties in producing biologically active therapeutics such as Fab fragments, which require protein folding and subsequent three-dimensional structure development. This paper outlines the recent improvements in upstream and downstream unit operations for producing Fab fragments in E. coli. Monoclonal antibody fragments (Fab) are a rising class of biotherapeutics and their production has been optimised using coexpression of molecular chaperones such as DsbC or DnaK–DnaJ–GrpE, as well as strain engineering for post-translational modifications such as disulphide bridging. Different media systems such as EnBase and combining nitrogen source supplementation with low-temperature cultivation have resulted in improvement in cell integrity, protein expression, and protein refolding. The recovery of native proteins from insoluble inclusion bodies can be improved by adjusting refolding conditions, as well as by incorporating multimodal and affinity chromatography for achieving high product yields in purification. Recent developments summarised in this review may tune the E. coli expression system to produce more complex and glycosylated proteins for therapeutic use in the near future.

Funder

Department of Biotechnology

Biotechnology Industry Research Assistance Council

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3