Overexpression of a Thermostable α-Amylase through Genome Integration in Bacillus subtilis

Author:

Yang Yifan1,Fu Xiaoping234,Zhao Xingya234,Xu Jianyong234,Liu Yihan1ORCID,Zheng Hongchen2345ORCID,Bai Wenqin2345,Song Hui234

Affiliation:

1. Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China

2. National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China

3. Industrial Enzymes National Engineering Research Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China

4. Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China

5. Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China

Abstract

A carbohydrate binding module 68 (CBM68) of pullulanase from Anoxybacillus sp. LM18-11 was used to enhance the secretory expression of a thermostable α-amylase (BLA702) in Bacillus subtilis, through an atypical secretion pathway. The extracellular activity of BLA702 guided by CBM68 was 1248 U/mL, which was 12.6 and 7.2 times higher than that of BLA702 guided by its original signal peptide and the endogenous signal peptide LipA, respectively. A single gene knockout strain library containing 51 genes encoding macromolecular transporters was constructed to detect the effect of each transporter on the secretory expression of CBM68-BLA702. The gene knockout strain 0127 increased the extracellular amylase activity by 2.5 times. On this basis, an engineered strain B. subtilis 0127 (AmyE::BLA702-NprB::CBM68-BLA702-PrsA) was constructed by integrating BLA702 and CBM68-BLA702 at the AmyE and NprB sites in the genome of B. subtilis 0127, respectively. The molecular chaperone PrsA was overexpressed, to reduce the inclusion body formation of the recombinant enzymes. The highest extracellular amylase activity produced by B. subtilis 0127 (AmyE::BLA702-NprB::CBM68-BLA702-PrsA) was 3745.7 U/mL, which was a little lower than that (3825.4 U/mL) of B. subtilis 0127 (pMAC68-BLA702), but showing a better stability of passage. This newly constructed strain has potential for the industrial production of BLA702.

Funder

State Key Research and Development Program of China

Tianjin Synthetic Biotechnology Innovation Capacity Improvement Project

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3