Establishment of Flavonoid Fingerprint of TMR Diet and Optimization Factor Analysis Strategy and In Vitro Fermentation Parameters Based on Spectrum–Effect Relationship

Author:

Zhao Xiaobo1ORCID,Xiong Anran1,Yu Shiqiang1,Wang Linwei1,Wang Jing1,Zhao Yuchao1,Jiang Linshu1

Affiliation:

1. Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing 102206, China

Abstract

Nutricines, the nutritionally active substances in feed, play a vital role in enhancing immune function, antioxidant activity, and feed efficiency in dairy cows. Identifying nutricines in total mixed ration (TMR) provides insights into feed quality and their impact on dairy cow health. However, due to the structural diversity of nutricines, data mining using multivariate variable models faces challenges in exploring their relationships. To address this, this study established a hierarchical clustering and optimization factor strategy for 13 common flavonoid peaks detected using apparent data and HPLC-DAD. The establishment of the flavonoid fingerprint of TMR diet in dairy cows detected 13 common peaks, five of which were found using standard products: p-coumaric acid, sinapic acid, tricin, and diosmetin. In vitro fermentation results using different TMR samples in substrate fermentation indicated that the dry matter disappearance rate, NH3-N, acetate, propionate, butyrate, isovalerate, and valerate changes varied significantly (p < 0.05). In spectrum–activity relationship studies, P2, P6, P8, P9, P10, and P11 were all considered possible factors causing this effect. In the analysis of optimization factor strategy, the peak spectrum model of four fermentation parameters, i.e., pH, dry matter digestibility, NH3-N, and acetate, was constructed after optimization (p < 0.05), and the data model is listed in the main text. In structure–activity relationship studies, ferulic acid, isoferulic acid, methyl sinapic acid, methyl 4-hydroxycinnamate, and p-hydroxybenzalacetone may serve as candidate references for compound 10 and may play an important role in affecting the digestibility of dry matter in in vitro fermentation. These findings highlight the role of flavonoids in TMR feed as key factors in maintaining dairy cow health and differentiating nutritional value. This study proposes a novel method for future TMR diet formulation and quality evaluation, with potential implications for improving dairy cow health and performance. Further research is needed to validate these findings and elucidate the mechanisms underlying nutricine effects on dairy cow nutrition and health.

Funder

National “Thirteenth Five-Year Plan” Key R & D Plan

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3