Transcription Analysis of the Acid Tolerance Mechanism of Pichia kudriavzevii NBRC1279 and NBRC1664

Author:

Akita Hironaga1ORCID,Matsushika Akinori2

Affiliation:

1. Department of Basic Science, College of Industrial Technology, Nihon University, 2-11-1 Shinei, Narashino 275-8575, Chiba, Japan

2. Department of Biotechnology and Chemistry, Faculty of Engineering, Kindai University, Higashi-Hiroshima 739-2116, Hiroshima, Japan

Abstract

Simultaneous saccharification and fermentation (SSF) has been investigated for the efficient production of ethanol because it has several advantages such as simplifying the manufacturing process, operating easily, and reducing energy input. Previously, using lignocellulosic biomass as source materials, we succeeded in producing ethanol by SSF with Pichia kudriavzevii NBRC1279 and NBRC1664. However, various acids that fermentation inhibitors are also produced by the hydrolysis of lignocellulosic biomass, and the extent to which these acids affect the growth and ethanol productivity of the two strains has not yet been investigated. In this study, to better understand the acid tolerance mechanism of the two strains, a spot assay, growth experiment, and transcriptome analysis were carried out using Saccharomyces cerevisiae BY4742 as a control. When the three strains were cultured in SCD medium containing 15 mM formic acid, 35 mM sulfuric acid, 60 mM hydrochloric acid, 100 mM acetic acid, or 550 mM lactic acid, only P. kudriavzevii NBRC1664 could grow well under all conditions, and it showed the fastest growth rates. The transcriptome analysis showed that “MAPK signaling pathway-yeast” was significantly enriched in P. kudriavzevii NBRC1664 cultured with 60 mM hydrochloric acid, and most genes involved in the high osmolarity glycerol (HOG) pathway were up-regulated. Therefore, the up-regulation of the HOG pathway may be important for adapting to acid stress in P. kudriavzevii. Moreover, the log2-transformed fold change value in the expression level of Gpd1 was 1.3-fold higher in P. kudriavzevii NBRC1664 than in P. kudriavzevii NBRC1279, indicating that high Gpd1 expression may be accountable for the higher acid tolerance of P. kudriavzevii NBRC1664. The transcriptome analysis performed in this study provides preliminary knowledge of the molecular mechanism of acid stress tolerance in P. kudriavzevii. Our data may be useful for future studies on methods to improve the tolerance of P. kudriavzevii to acids produced from lignocellulose hydrolysis.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3