Affiliation:
1. Department of Basic Science, College of Industrial Technology, Nihon University, 2-11-1 Shinei, Narashino 275-8575, Chiba, Japan
2. Department of Biotechnology and Chemistry, Faculty of Engineering, Kindai University, Higashi-Hiroshima 739-2116, Hiroshima, Japan
Abstract
Simultaneous saccharification and fermentation (SSF) has been investigated for the efficient production of ethanol because it has several advantages such as simplifying the manufacturing process, operating easily, and reducing energy input. Previously, using lignocellulosic biomass as source materials, we succeeded in producing ethanol by SSF with Pichia kudriavzevii NBRC1279 and NBRC1664. However, various acids that fermentation inhibitors are also produced by the hydrolysis of lignocellulosic biomass, and the extent to which these acids affect the growth and ethanol productivity of the two strains has not yet been investigated. In this study, to better understand the acid tolerance mechanism of the two strains, a spot assay, growth experiment, and transcriptome analysis were carried out using Saccharomyces cerevisiae BY4742 as a control. When the three strains were cultured in SCD medium containing 15 mM formic acid, 35 mM sulfuric acid, 60 mM hydrochloric acid, 100 mM acetic acid, or 550 mM lactic acid, only P. kudriavzevii NBRC1664 could grow well under all conditions, and it showed the fastest growth rates. The transcriptome analysis showed that “MAPK signaling pathway-yeast” was significantly enriched in P. kudriavzevii NBRC1664 cultured with 60 mM hydrochloric acid, and most genes involved in the high osmolarity glycerol (HOG) pathway were up-regulated. Therefore, the up-regulation of the HOG pathway may be important for adapting to acid stress in P. kudriavzevii. Moreover, the log2-transformed fold change value in the expression level of Gpd1 was 1.3-fold higher in P. kudriavzevii NBRC1664 than in P. kudriavzevii NBRC1279, indicating that high Gpd1 expression may be accountable for the higher acid tolerance of P. kudriavzevii NBRC1664. The transcriptome analysis performed in this study provides preliminary knowledge of the molecular mechanism of acid stress tolerance in P. kudriavzevii. Our data may be useful for future studies on methods to improve the tolerance of P. kudriavzevii to acids produced from lignocellulose hydrolysis.
Funder
Japan Society for the Promotion of Science
Subject
Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献