Microbial Exploitation of Feather Wastes for Sustainable Production of Keratinase and Collagenase Enzymes by Didymella keratinophila AUMC 15399 in Submerged Fermentation

Author:

Al-Bedak Osama Abdel-Hafeez Mohamed1,Moharram Ahmed Mohamed12,Hussein Nemmat Abdel-Gawad12,Taha Doaa Mohamed1,Stephenson Steven L.3,Ameen Fuad4ORCID

Affiliation:

1. Assiut University Mycological Centre, Assiut University, Assiut 71511, Egypt

2. Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut 71511, Egypt

3. Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA

4. Department of Botany & Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

Abstract

A distinctive isolate was discovered and visually recognized as a member of the genus Didymella during a routine examination of Coelomycetes isolated from diverse fruit juices. Based on sequencing of the internal transcribed spacer (ITS), the fungus was identified as Didymella keratinophila since it showed a 100% identity to the type strain. The strain thrived and produced keratinase and collagenase enzymes by hydrolyzing native chicken feathers in submerged fermentation (SmF). After 10 days of fermentation at 30 °C, pH 9 using sodium nitrate as a nitrogen supply produced the highest keratinase activity of 8780 ± 620 U/mL/min, while pH 6 and beef extract produced the maximum collagenase activity of 11,230 ± 1290 U/mL/min. The partially-purified keratinase enzyme worked best at pH 7.0 and 45 °C, exhibiting a specific activity of 44,903 ± 1555 U/mg protein. The activity of the partially-purified collagenase enzyme was excellent at pH 6.0 at 35 °C, generating 15,753 ± 110 U/mg enzyme-specific activity. Mn2+ and K+ were the most efficient inhibitors of keratinases and collagenase, respectively. Both EDTA and metal ions significantly decreased the activity of keratinase and collagenase. This report identified a workable supplier of collagenase and keratinase enzymes derived from chicken feathers, offering a reliable way to exploit and manage these wastes for obtaining high-value products.

Funder

Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3