Automatic Detection of Cognitive Impairment with Virtual Reality

Author:

Mannan Farzana A.,Porffy Lilla A.,Joyce Dan W.,Shergill Sukhwinder S.,Celiktutan OyaORCID

Abstract

Cognitive impairment features in neuropsychiatric conditions and when undiagnosed can have a severe impact on the affected individual’s safety and ability to perform daily tasks. Virtual Reality (VR) systems are increasingly being explored for the recognition, diagnosis and treatment of cognitive impairment. In this paper, we describe novel VR-derived measures of cognitive performance and show their correspondence with clinically-validated cognitive performance measures. We use an immersive VR environment called VStore where participants complete a simulated supermarket shopping task. People with psychosis (k=26) and non-patient controls (k=128) participated in the study, spanning ages 20–79 years. The individuals were split into two cohorts, a homogeneous non-patient cohort (k=99 non-patient participants) and a heterogeneous cohort (k=26 patients, k=29 non-patient participants). Participants’ spatio-temporal behaviour in VStore is used to extract four features, namely, route optimality score, proportional distance score, execution error score, and hesitation score using the Traveling Salesman Problem and explore-exploit decision mathematics. These extracted features are mapped to seven validated cognitive performance scores, via linear regression models. The most statistically important feature is found to be the hesitation score. When combined with the remaining extracted features, the multiple linear regression model resulted in statistically significant results with R2 = 0.369, F-Stat = 7.158, p(F-Stat) = 0.000128.

Funder

UK Medical Research Council

King’s College London MRC Doctoral Training Partnership in Biomedical Sciences

National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre at South London

Maudsley NHS Foundation Trust and King’s College London

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3