Multisector Risk Identification to Assess Resilience to Flooding

Author:

Almeida Maria do CéuORCID,Telhado Maria João,Morais Marco,Barreiro JoãoORCID

Abstract

Climate trends suggest an increase in the frequency of intense rainfall events and the aggravation of existing conditions in terms of flooding in urban areas. In coastal areas, conditions are aggravated by coexistence with coastal overtopping. Flood risk control is complex, and the interdependencies among the services and sectors in urban areas imply the need for adoption of approaches that embrace the interplay between service providers to ensure critical urban functions. Flooding incorporates several hazards. Assessment of resilience to multiple hazards in complex environments benefits from integrated and multi-sectoral approaches. A common constraint resides in the limited data and tools available for undertaking these complex assessments. This paper proposes a risk-based methodology to assess urban areas’ resilience to flooding by addressing sectors’ interdependencies in a context of limited data and ready-to-use tools. Multisector flood risk identification is pursued with the support of a geographic information system and is applied to Lisbon with a focus on the cascading effects of drainage system failures on buildings, populations, mobility, waste management, and electricity supply. The results demonstrate the potential for combining data and knowledge from different sources with dual modelling approaches, thus allowing one to obtain trends of exposure and vulnerability to flooding for current and climate change scenarios. This methodology facilitates dialogue among stakeholders and decision levels by contributing to capacity building, and it contributes to sustainable development.

Funder

Horizon 2020 Framework Programme

Publisher

MDPI AG

Subject

Atmospheric Science

Reference47 articles.

1. 5th Assessment Report,2014

2. Assessing flood risk at the global scale: model setup, results, and sensitivity

3. The Global Risks Report 2019,2019

4. Global Warming of 1.5 °C. Summary for Policymakers,2018

5. Inter-sectoral preparedness and mitigation for networked risks and cascading effects

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3