A Model-Driven Channel Estimation Method for Millimeter-Wave Massive MIMO Systems

Author:

Liu Qingli1,Li Yangyang1,Sun Jiaxu1

Affiliation:

1. Communication and Network Laboratory, Dalian University, Dalian 116622, China

Abstract

Aiming at the problem of low estimation accuracy under a low signal-to-noise ratio due to the failure to consider the “beam squint” effect in millimeter-wave broadband systems, this paper proposes a model-driven channel estimation method for millimeter-wave massive MIMO broadband systems. This method considers the “beam squint” effect and applies the iterative shrinkage threshold algorithm to the deep iterative network. First, the millimeter-wave channel matrix is transformed into a transform domain with sparse features through training data learning to obtain a sparse matrix. Secondly, a contraction threshold network based on an attention mechanism is proposed in the phase of beam domain denoising. The network selects a set of optimal thresholds according to feature adaptation, which can be applied to different signal-to-noise ratios to achieve a better denoising effect. Finally, the residual network and the shrinkage threshold network are jointly optimized to accelerate the convergence speed of the network. The simulation results show that the convergence speed is increased by 10% and the channel estimation accuracy is increased by 17.28% on average under different signal-to-noise ratios.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Optimized Sequence for Sparse Channel Estimation in a 5G MIMO System;International Journal of Electronics;2024-01-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3