Attention-Based Bi-Prediction Network for Versatile Video Coding (VVC) over 5G Network

Author:

Choi Young-Ju1ORCID,Lee Young-Woon2ORCID,Kim Jongho3ORCID,Jeong Se Yoon3ORCID,Choi Jin Soo3ORCID,Kim Byung-Gyu1ORCID

Affiliation:

1. Department of IT Engineering, Sookmyung Women’s University, Seoul 04310, Republic of Korea

2. Department of Computer Engineering, Sunmoon University, Asan 31460, Republic of Korea

3. Media Coding Research Section, Electronics and Telecommunications Research Institute, Daejeon 34129, Republic of Korea

Abstract

As the demands of various network-dependent services such as Internet of things (IoT) applications, autonomous driving, and augmented and virtual reality (AR/VR) increase, the fifthgeneration (5G) network is expected to become a key communication technology. The latest video coding standard, versatile video coding (VVC), can contribute to providing high-quality services by achieving superior compression performance. In video coding, inter bi-prediction serves to improve the coding efficiency significantly by producing a precise fused prediction block. Although block-wise methods, such as bi-prediction with CU-level weight (BCW), are applied in VVC, it is still difficult for the linear fusion-based strategy to represent diverse pixel variations inside a block. In addition, a pixel-wise method called bi-directional optical flow (BDOF) has been proposed to refine bi-prediction block. However, the non-linear optical flow equation in BDOF mode is applied under assumptions, so this method is still unable to accurately compensate various kinds of bi-prediction blocks. In this paper, we propose an attention-based bi-prediction network (ABPN) to substitute for the whole existing bi-prediction methods. The proposed ABPN is designed to learn efficient representations of the fused features by utilizing an attention mechanism. Furthermore, the knowledge distillation (KD)- based approach is employed to compress the size of the proposed network while keeping comparable output as the large model. The proposed ABPN is integrated into the VTM-11.0 NNVC-1.0 standard reference software. When compared with VTM anchor, it is verified that the BD-rate reduction of the lightweighted ABPN can be up to 5.89% and 4.91% on Y component under random access (RA) and low delay B (LDB), respectively.

Funder

Institute for Information & communications Technology Planning & Evaluation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Real-Time Video Transmission in Intelligent Vehicle Outdoor Remote Driving System Based on 5G Network;2024 5th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT);2024-03-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3