Affiliation:
1. Department of IT Engineering, Sookmyung Women’s University, Seoul 04310, Republic of Korea
2. Department of Computer Engineering, Sunmoon University, Asan 31460, Republic of Korea
3. Media Coding Research Section, Electronics and Telecommunications Research Institute, Daejeon 34129, Republic of Korea
Abstract
As the demands of various network-dependent services such as Internet of things (IoT) applications, autonomous driving, and augmented and virtual reality (AR/VR) increase, the fifthgeneration (5G) network is expected to become a key communication technology. The latest video coding standard, versatile video coding (VVC), can contribute to providing high-quality services by achieving superior compression performance. In video coding, inter bi-prediction serves to improve the coding efficiency significantly by producing a precise fused prediction block. Although block-wise methods, such as bi-prediction with CU-level weight (BCW), are applied in VVC, it is still difficult for the linear fusion-based strategy to represent diverse pixel variations inside a block. In addition, a pixel-wise method called bi-directional optical flow (BDOF) has been proposed to refine bi-prediction block. However, the non-linear optical flow equation in BDOF mode is applied under assumptions, so this method is still unable to accurately compensate various kinds of bi-prediction blocks. In this paper, we propose an attention-based bi-prediction network (ABPN) to substitute for the whole existing bi-prediction methods. The proposed ABPN is designed to learn efficient representations of the fused features by utilizing an attention mechanism. Furthermore, the knowledge distillation (KD)- based approach is employed to compress the size of the proposed network while keeping comparable output as the large model. The proposed ABPN is integrated into the VTM-11.0 NNVC-1.0 standard reference software. When compared with VTM anchor, it is verified that the BD-rate reduction of the lightweighted ABPN can be up to 5.89% and 4.91% on Y component under random access (RA) and low delay B (LDB), respectively.
Funder
Institute for Information & communications Technology Planning & Evaluation
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Research on Real-Time Video Transmission in Intelligent Vehicle Outdoor Remote Driving System Based on 5G Network;2024 5th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT);2024-03-29