Challenges in the Definitive Diagnosis of Niemann–Pick Type C—Leaky Variants and Alternative Transcripts

Author:

Encarnação Marisa123ORCID,Ribeiro Isaura456ORCID,David Hugo1237ORCID,Coutinho Maria Francisca123ORCID,Quelhas Dulce456,Alves Sandra123ORCID

Affiliation:

1. Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal

2. Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal

3. Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal

4. Laboratório de Bioquímica Genética, Serviço de Genética Laboratorial, Centro de Genética Médica Jacinto Magalhães, Centro Hospitalar e Universitário de Santo António (CHUdSA), 4099-001 Porto, Portugal

5. UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS, University of Porto, 4099-002 Porto, Portugal

6. ITR—Laboratory for Integrative and Translational Research in Population Health, 4050-600 Porto, Portugal

7. Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal

Abstract

Niemann–Pick type C (NPC, ORPHA: 646) is a neuro-visceral, psychiatric disease caused predominantly by pathogenic variants in the NPC1 gene or seldom in NPC2. The rarity of the disease, and its wide range of clinical phenotypes and ages of onset, turn the diagnosis into a significant challenge. Other than the detailed clinical history, the typical diagnostic work-up for NPC includes the quantification of pathognomonic metabolites. However, the molecular basis diagnosis is still of utmost importance to fully characterize the disorder. Here, the authors provide an overview of splicing variants in the NPC1 and NPC2 genes and propose a new workflow for NPC diagnosis. Splicing variants cover a significant part of the disease-causing variants in NPC. The authors used cDNA analysis to study the impact of such variants, including the collection of data to classify them as leaky or non-leaky pathogenic variants. However, the presence of naturally occurring spliced transcripts can misdiagnose or mask a pathogenic variant and make the analysis even more difficult. Analysis of the NPC1 cDNA in NPC patients in parallel with controls is vital to assess and detect alternatively spliced forms. Moreover, nonsense-mediated mRNA decay (NMD) analysis plays an essential role in evaluating the naturally occurring transcripts during cDNA analysis and distinguishing them from other pathogenic variants’ associated transcripts.

Funder

national funds through FCT—Fundação para a Ciência e a Tecnologia, I.P.

national funds

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3