Identification of Intron Retention in the Slc16a3 Gene Transcript Encoding the Transporter MCT4 in the Brain of Aged and Alzheimer-Disease Model (APPswePS1dE9) Mice

Author:

EL-Seedy Ayman12ORCID,Pellerin Luc3,Page Guylène2ORCID,Ladeveze Veronique2

Affiliation:

1. Laboratory of Cellular and Molecular Genetics, Department of Genetics, Alexandria University, Aflaton Street, El-Shatby, Alexandria 21545, Egypt

2. Neurovascular Unit and Cognitive Disorders (NEUVACOD), Faculty of Pharmacy (GP), Faculty of Fundamental and Applied Science (VL), University of Poitiers, Pôle Biologie Santé, 86073 Poitiers, France

3. IRMETIST, INSERM, Faculty of Medicine, University of Poitiers (U1313), CHU de Poitiers, 86021 Poitiers, France

Abstract

The monocarboxylate transporter 4 (MCT4; Slc16a3) is expressed in the central nervous system, notably by astrocytes. It is implicated in lactate release and the regulation of glycolytic flux. Whether its expression varies during normal and/or pathological aging is unclear. As the presence of its mature transcript in the brain of young and old mice was determined, an unexpectedly longer RT-PCR fragment was detected in the mouse frontal cortex and hippocampus at 12 vs. 3 months of age. Cultured astrocytes expressed the expected 516 base pair (bp) fragment but treatment with IL-1β to mimic inflammation as can occur during aging led to the additional expression of a 928 bp fragment like that seen in aged mice. In contrast, cultured pericytes (a component of the blood–brain barrier) only exhibited the 516 bp fragment. Intriguingly, cultured endothelial cells constitutively expressed both fragments. When RT-PCR was performed on brain subregions of an Alzheimer mouse model (APPswePS1dE9), no fragment was detected at 3 months, while only the 928 bp fragment was present at 12 months. Sequencing of MCT4 RT-PCR products revealed the presence of a remaining intron between exon 2 and 3, giving rise to the longer fragment detected by RT-PCR. These results unravel the existence of intron retention for the MCT4 gene in the central nervous system. Such alternative splicing appears to increase with age in the brain and might be prominent in neurodegenerative diseases such as Alzheimer’s disease. Hence, further studies in vitro and in vivo of intron 2 retention in the Slc16a3 gene transcript are required for adequate characterization concerning the biological roles of Slc16a3 isoforms in the context of aging and Alzheimer’s disease pathology.

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3