Transcriptome Analysis and QTL Mapping Identify Candidate Genes and Regulatory Mechanisms Related to Low-Temperature Germination Ability in Maize

Author:

Du Lei1,Peng Xin2,Zhang Hao2,Xin Wangsen2,Ma Kejun2,Liu Yongzhong1,Hu Guangcan3

Affiliation:

1. Hubei Hongshan Laboratory, Wuhan 430070, China

2. College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China

3. Institute of Upland Food Crops, YiChang Academy of Agricultural Science, Yichang 443011, China

Abstract

Low-temperature germination ability (LTGA) is an important characteristic for spring sowing maize. However, few maize genes related to LTGA were confirmed, and the regulatory mechanism is less clear. Here, maize-inbred lines Ye478 and Q1 with different LTGA were used to perform transcriptome analysis at multiple low-temperature germination stages, and a co-expression network was constructed by weighted gene co-expression network analysis (WGCNA). Data analysis showed that 7964 up- and 5010 down-regulated differentially expressed genes (DEGs) of Ye478 were identified at low-temperature germination stages, while 6060 up- and 2653 down-regulated DEGs of Q1 were identified. Gene ontology (GO) enrichment analysis revealed that ribosome synthesis and hydrogen peroxide metabolism were enhanced and mRNA metabolism was weakened under low-temperature stress for Ye478, while hydrogen peroxide metabolism was enhanced and mRNA metabolism was weakened for Q1. DEGs pairwise comparisons between the two genotypes found that Ye478 performed more ribosome synthesis at low temperatures compared with Q1. WGCNA analysis based on 24 transcriptomes identified 16 co-expressed modules. Of these, the MEbrown module was highly correlated with Ye478 at low-temperature stages and catalase and superoxide dismutase activity, and the MEred, MEgreen, and MEblack modules were highly correlated with Ye478 across low-temperature stages, which revealed a significant association between LTGA and these modules. GO enrichment analysis showed the MEbrown and MEred modules mainly functioned in ribosome synthesis and cell cycle, respectively. In addition, we conducted quantitative trait loci (QTL) analysis based on a doubled haploid (DH) population constructed by Ye478 and Q1 and identified a major QTL explanting 20.6% of phenotype variance on chromosome 1. In this QTL interval, we found three, four, and three hub genes in the MEbrown, MEred, and MEgreen modules, of which two hub genes (Zm00001d031951, Zm00001d031953) related to glutathione metabolism and one hub gene (Zm00001d031617) related to oxidoreductase activity could be the candidate genes for LTGA. These biological functions and candidate genes will be helpful in understanding the regulatory mechanism of LTGA and the directional improvement of maize varieties for LTGA.

Funder

Major Project of Hubei Hongshan Laboratory

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Reference57 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3