Sll1252 Coordinates Electron Transport between Plastoquinone and Cytochrome b6/f Complex in Synechocystis PCC 6803

Author:

Balaga Radha Rani1,Itoh Fumihiro2,Chauhan Suraj3,Mandal Mukulika3,Krishna Pilla Sankara3,Suzuki Iwane4,Prakash Jogadhenu S. S.3

Affiliation:

1. Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India

2. Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8572, Japan

3. Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India

4. Institute of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8572, Japan

Abstract

A mutant, Δsll1252ins, was generated to functionally characterize Sll1252. Δsll1252ins exhibited a slow-growth phenotype at 70 µmol photons m−2 s−1 and glucose sensitivity. In Δsll1252ins, the rate of PSII activity was not affected, whereas the whole chain electron transport activity was reduced by 45%. The inactivation of sll1252 led to the upregulation of genes, which were earlier reported to be induced in DBMIB-treated wild-type, suggesting that Sll1252 may be involved in electron transfer from the reduced-PQ pool to Cyt b6/f. The inhibitory effect of DCMU on PSII activity was similar in both wild-type and Δsll1252ins. However, the concentration of DBMIB for 50% inhibition of whole chain electron transport activity was 140 nM for Δsll1252ins and 300 nM for wild-type, confirming the site of action of Sll1252. Moreover, the elevated level of the reduced-PQ pool in Δsll1252ins supports that Sll1252 functions between the PQ pool and Cyt b6/f. Interestingly, we noticed that Δsll1252ins reverted to wild-type phenotype by insertion of natural transposon, ISY523, at the disruption site. Δsll1252-Ntrn, expressing only the C-terminal region of Sll1252, exhibited a slow-growth phenotype and disorganized thylakoid structure compared to wild-type and Δsll1252-Ctrn (expressing only the N-terminal region). Collectively, our data suggest that Sll1252 regulates electron transfer between the PQ pool and the Cyt b6/f complex in the linear photosynthetic electron transport chain via coordinated function of both the N- and C-terminal regions of Sll1252.

Funder

DST-JSPS

DST

DBT

Department of Biotechnology

Grant-in-Aid for Scientific Research

JSPS, JSPS KAKENHI

JST OPERA

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3