Homologous Recombination and Repair Functions Required for Mutagenicity during Yeast Meiosis

Author:

Morciano Liat1,Elgrabli Renana M.1,Zenvirth Drora1,Arbel-Eden Ayelet12ORCID

Affiliation:

1. Department of Genetics, Hebrew University of Jerusalem, Jerusalem 91904, Israel

2. The Medical Laboratory Sciences Department, Hadassah Academic College, Jerusalem 91010, Israel

Abstract

Several meiotic events reshape the genome prior to its transfer (via gametes) to the next generation. The occurrence of new meiotic mutations is tightly linked to homologous recombination (HR) and firmly depends on Spo11-induced DNA breaks. To gain insight into the molecular mechanisms governing mutagenicity during meiosis, we examined the timing of mutation and recombination events in cells deficient in various DNA HR-repair genes, which represent distinct functions along the meiotic recombination process. Despite sequence similarities and overlapping activities of the two DNA translocases, Rad54 and Tid1, we observed essential differences in their roles in meiotic mutation occurrence: in the absence of Rad54, meiotic mutagenicity was elevated 8-fold compared to the wild type (WT), while in the tid1Δ mutant, there were few meiotic mutations, nine percent compared to the WT. We propose that the presence of Rad54 channels recombinational repair to a less mutagenic pathway, whereas repair assisted by Tid1 is more mutagenic. A 3.5-fold increase in mutation level was observed in dmc1∆ cells, suggesting that single-stranded DNA (ssDNA) may be a potential source for mutagenicity during meiosis. Taken together, we suggest that the introduction of de novo mutations also contributes to the diversification role of meiotic recombination. These rare meiotic mutations revise genomic sequences and may contribute to long-term evolutionary changes.

Funder

Israel Science Foundation

Hadassah Academic College

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3