Network Analysis of Publicly Available RNA-seq Provides Insights into the Molecular Mechanisms of Plant Defense against Multiple Fungal Pathogens in Arabidopsis thaliana

Author:

Soto-Cardinault Cynthia1,Childs Kevin L.2,Góngora-Castillo Elsa3

Affiliation:

1. Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mérida 97205, Mexico

2. Plant Biology Department, Michigan State University, East Lansing, MI 48824, USA

3. CONAHCYT-Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mérida 97205, Mexico

Abstract

Fungal pathogens can have devastating effects on global crop production, leading to annual economic losses ranging from 10% to 23%. In light of climate change-related challenges, researchers anticipate an increase in fungal infections as a result of shifting environmental conditions. However, plants have developed intricate molecular mechanisms for effective defense against fungal attacks. Understanding these mechanisms is essential to the development of new strategies for protecting crops from multiple fungi threats. Public omics databases provide valuable resources for research on plant–pathogen interactions; however, integrating data from different studies can be challenging due to experimental variation. In this study, we aimed to identify the core genes that defend against the pathogenic fungi Colletotrichum higginsianum and Botrytis cinerea in Arabidopsis thaliana. Using a custom framework to control batch effects and construct Gene Co-expression Networks in publicly available RNA-seq dataset from infected A. thaliana plants, we successfully identified a gene module that was responsive to both pathogens. We also performed gene annotation to reveal the roles of previously unknown protein-coding genes in plant defenses against fungal infections. This research demonstrates the potential of publicly available RNA-seq data for identifying the core genes involved in defending against multiple fungal pathogens.

Funder

Consejo Nacional de Humanidades, Ciencia y Tecnología (CONAHCYT), Mexico

scholarship

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3