Abstract
Oxidative stress has been implicated in the etiology of Parkinson’s disease (PD). Molecules non-covalently binding to the Keap1–Nrf2 complex could be a promising therapeutic approach for PD. Herein, two novel prenylated indole alkaloids asperpenazine (1), and asperpendoline (2) with a scarce skeleton of pyrimido[1,6-a]indole were discovered from the co-cultivated fungi of Aspergillus ochraceus MCCC 3A00521 and Penicillium sp. HUBU 0120. Compound 2 exhibited potential neuroprotective activity on SH-SY5Y cells against oxidative stress. Molecular mechanism research demonstrated that 2 inhibited Keap1 expression, resulting in the translocation of Nrf2 from the cytoplasm to the nucleus, activating the downstream genes expression of HO-1 and NQO1, leading to the reduction in reactive oxygen species (ROS) and the augment of glutathione. Molecular docking and dynamic simulation analyses manifested that 2 interacted with Keap1 (PDB ID: 1X2R) via forming typical hydrogen and hydrophobic bonds with residues and presented less fluctuation of RMSD and RMSF during a natural physiological condition.
Funder
National Natural Science Foundation of China
National & Local Joint Engineering Research Center of High-throughput Drug Screening Tech-nology, Hubei Province, China
Subject
Drug Discovery,Pharmacology, Toxicology and Pharmaceutics (miscellaneous),Pharmaceutical Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献