Abstract
The COVID-19 disease constitutes a global health contingency. This disease has left millions people infected, and its spread has dramatically increased. This study proposes a new method based on a Convolutional Neural Network (CNN) and temporal Component Transformation (CT) called CNN–CT. This method is applied to confirmed cases of COVID-19 in the United States, Mexico, Brazil, and Colombia. The CT changes daily predictions and observations to weekly components and vice versa. In addition, CNN–CT adjusts the predictions made by CNN using AutoRegressive Integrated Moving Average (ARIMA) and Exponential Smoothing (ES) methods. This combination of strategies provides better predictions than most of the individual methods by themselves. In this paper, we present the mathematical formulation for this strategy. Our experiments encompass the fine-tuning of the parameters of the algorithms. We compared the best hybrid methods obtained with CNN–CT versus the individual CNN, Long Short-Term Memory (LSTM), ARIMA, and ES methods. Our results show that our hybrid method surpasses the performance of LSTM, and that it consistently achieves competitive results in terms of the MAPE metric, as opposed to the individual CNN and ARIMA methods, whose performance varies largely for different scenarios.
Subject
Applied Mathematics,Computational Mathematics,General Engineering
Reference30 articles.
1. Coronavirus disease-2019: An update on third coronavirus outbreak of 21st century
2. The Hybrid Forecasting Method SVR-ESAR for COVID-19 Background;Frausto Solis;Int. J. Comb. Optim. Probl. Inform.,2021
3. A contribution to the mathematical theory of epidemics
4. Forecasting: Principles and Practice;Hyndman,2018
5. Support-vector networks
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献