A Peptides Prediction Methodology for Tertiary Structure Based on Simulated Annealing

Author:

Sánchez-Hernández Juan P.ORCID,Frausto-Solís JuanORCID,González-Barbosa Juan J.ORCID,Soto-Monterrubio Diego A.,Maldonado-Nava Fanny G.,Castilla-Valdez Guadalupe

Abstract

The Protein Folding Problem (PFP) is a big challenge that has remained unsolved for more than fifty years. This problem consists of obtaining the tertiary structure or Native Structure (NS) of a protein knowing its amino acid sequence. The computational methodologies applied to this problem are classified into two groups, known as Template-Based Modeling (TBM) and ab initio models. In the latter methodology, only information from the primary structure of the target protein is used. In the literature, Hybrid Simulated Annealing (HSA) algorithms are among the best ab initio algorithms for PFP; Golden Ratio Simulated Annealing (GRSA) is a PFP family of these algorithms designed for peptides. Moreover, for the algorithms designed with TBM, they use information from a target protein’s primary structure and information from similar or analog proteins. This paper presents GRSA-SSP methodology that implements a secondary structure prediction to build an initial model and refine it with HSA algorithms. Additionally, we compare the performance of the GRSAX-SSP algorithms versus its corresponding GRSAX. Finally, our best algorithm GRSAX-SSP is compared with PEP-FOLD3, I-TASSER, QUARK, and Rosetta, showing that it competes in small peptides except when predicting the largest peptides.

Publisher

MDPI AG

Subject

Applied Mathematics,Computational Mathematics,General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3