Species Richness Promotes Productivity through Tree Crown Spatial Complementarity in a Species-Rich Natural Forest

Author:

Xu YaozhanORCID,Chen Han Y. H.,Xiao Zhiqiang,Wan Dan,Liu Feng,Guo YiliORCID,Qiao XiujuanORCID,Jiang Mingxi

Abstract

Ecological theory suggests that species with complementary architectural and physiological traits can optimize crown packing to improve resource efficiency and promote ecosystem productivity in forest communities. However, empirical evidence of this prediction is rare in species-rich natural forests, as little is known about how crown spatial complementarity regulates community species richness-productivity relationship (SRPR). In this study, we measured tree architectural traits (stem diameter, height, crown depth and width) for 11,337 trees, and quantified species richness, functional diversity, crown spatial complementarity, soil fertility and forest productivity for 44 quadrats (20 m × 20 m per quadrat) in the Badagongshan 25 ha forest plot, central China. We tested bivariate correlations between species richness, crown complementarity, functional diversity and forest productivity. We employed linear mixed effects models to predict crown complementarity and examined its relationship with functional diversity. Finally, we applied structural equation modeling to quantify the mediation effects of crown complementarity on SRPRs. Species richness promoted crown complementarity and forest productivity. Crown complementarity varied across quadrats, with increases driven primarily by changes in tree height. Crown complementarity was positively related to functional diversity and forest productivity. Species richness increased with soil total phosphorus, while functional diversity decreased with soil bulk density. Forest productivity increased with soil organic carbon and total nitrogen, but decreased with bulk density. Crown complementarity partially mediated the positive effect of species richness on forest productivity, and the mediation effect was mainly through functional diversity. Our results suggest that the crown complementarity index accurately reflects the niche complementarity through light utilization and carbon reallocation. Our study emphasizes that species richness can promote crown complementarity, leading to greater forest productivity, which provides greater insight into the mechanical understanding of the SRPRs.

Funder

National Natural Science Foundation of China

Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3