Designing Sustainable Ethanol Oxidation Catalysts: The Role of Graphene Oxide in NiCuGO Composite Material

Author:

Wala-Kapica Marta1,Szewczyk Magdalena1,Simka Wojciech1ORCID

Affiliation:

1. Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland

Abstract

The growing world population with the growth of civilization is causing the demand for electric energy to increase every year. For this reason, new energy sources such as fuel cells are becoming more and more needed, especially when they can use renewable fuel such as ethanol. This simple organic alcohol can be easily produced in a fermentation process using organic waste. Its oxidation might be used as a source for electricity; however, due to the lack of proper electrocatalytic materials, such a solution is not popular. A simple method of NiCuGO composite preparation via electrodeposition from a water-based solution containing graphene oxide suspension is proposed. The activity of the prepared material is proven, with higher current densities observed for the composite powder. The highest peak current density is observed for NiCuGO deposited with a higher current density. The observed ipA of 8.6 mA cm−2 has been higher than that reported by other researchers.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3