Bibliometric Analysis of Intelligent Systems for Early Anomaly Detection in Oil and Gas Contracts: Exploring Recent Progress and Challenges

Author:

Cardona Luis F.1ORCID,Guzmán-Luna Jaime A.1,Restrepo-Carmona Jaime A.1

Affiliation:

1. Facultad de Minas, Universidad Nacional de Colombia, sede Medellín, Medellín 050001, Colombia

Abstract

The oil and gas industries are crucial to global economies, influencing geopolitics, driving technological advancements, employing millions, and impacting financial markets. The complexity and the volume of data generated by these industries demonstrate the need for efficient information management, where effective contract audits play a key role in ensuring market stability, transparency, fair revenue distribution, corruption mitigation, and enhancing industry integrity to attract investors. This study employs bibliometric analysis to explore the application of machine learning (ML) in detecting anomalous contracts within the oil and gas industry. This analysis identifies key research and challenges, laying the groundwork for further computational ML advancements. The PRISMA guidelines identify ML’s role from 2018 to 2023, including post-COVID-19. Principal component analysis (PCA) evaluates the bibliometric contributions of different countries and institutions. China, Indonesia, Egypt, Saudi Arabia, the University of Antwerp Operations Research Group, and the University of Pittsburgh emerge as significant contributors. These findings underscore ML’s pivotal role in fraud detection, risk mitigation, and cost savings, concluding that anomalous contract detection remains open to newer ML techniques and ongoing research.

Funder

Universidad Nacional de Colombia and the Contraloría General de la República (CGR) of Colombia

Publisher

MDPI AG

Reference62 articles.

1. An Examination of Fraud Risk at Oil and Gas Companies;Burger;J. Forensic Investig. Account.,2022

2. Dirani, F., and Ponomarenko, T. (2021). Contractual Systems in the Oil and Gas Sector: Current Status and Development. Energies, 14.

3. Corruption in the Oil and Gas Industry: Implication for Economic Growth;Donwa;Eur. Sci. J.,2015

4. Design of a Safety Cost Estimation Parametric Model in Oil and Gas Engineering, Procurement and Construction Contracts;Toutounchian;Saf. Sci.,2018

5. Application of Machine Learning and Artificial Intelligence in Oil and Gas Industry;Sircar;Pet. Res.,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3