Quantitative Contributions of Climate and Human Activities to Streamflow and Sediment Load in the Xiliugou Basin of China

Author:

Wang Wenjun12,Zhang Zezhong3,Wang Zipeng3,Lai Hexin3,Feng Kai3,Qu Jihong3,Hao Rong4,Liu Yong4,Zhang Dequan4,Wang Fei3

Affiliation:

1. Yinshanbeilu Grassland Eco-Hydrology National Observation and Research Station, China Institute of Water Resources and Hydropower Research, Beijing 100038, China

2. Institute of Water Resources of Pastoral Area Ministry of Water Resources, Hohhot 010020, China

3. School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China

4. Ordos Development Center of Water Conservancy, Ordos 017001, China

Abstract

Investigating the influence of human activities and climate change on streamflow and sediment load is of great significance for understanding the hydrological cycle, addressing climate change, and ensuring sustainable water resource management. Based on observed data of precipitation, streamflow, and sediment load from 1990 to 2021 in the Xiliugou Basin, trend and abrupt change analyses of streamflow and sediment load were conducted using the coefficient of variation and Bayesian change point detection method. The effects of climate change and human activities on streamflow and sediment load were further examined through the double mass curve method, with a focus on the impact of land use changes on streamflow and sediment load dynamics. The results indicated that: (1) During the study period, there was a consistent decreasing trend in streamflow, sediment load, and precipitation, with respective rates of −77.76 × 104 m3/year, −55.97 × 104 Mt/year, and −0.84 mm/year. The distribution of annual streamflow and sediment load in the basin was uneven, with 61.05% of precipitation occurring during the wet season and the peak sediment discharge month being July, accounting for 58.90% of the total annual sediment load. (2) The variations in streamflow and sediment load in the Xiliugou Basin exhibited distinct stage characteristics, with abrupt changes occurring around 1997. Both streamflow and sediment load showed significant fluctuations from the reference period to the changing period, decreasing by 45.54% and 82.85%, respectively. (3) A positive correlation between precipitation and streamflow was observed in the Xiliugou Basin, with correlation coefficients (R) of 0.62 and 0.49, indicating a stimulating effect of precipitation on streamflow and sediment load. Human activities significantly reduced sediment load in the Xiliugou Basin from 1998 to 2021, contributing to a reduction of 115.08%. (4) An increase in cropland, water, and barren areas would lead to higher streamflow and sediment load, while an increase in grassland, forest, and impervious areas would decrease both streamflow and sediment load.

Funder

Key Special Project of the “Science and Technology Revitalization of Mongolia” Action

Henan Province Science and Technology Research Projects

Key Scientific Research Projects in Higher Education Institutions in Henan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3