Selected Simulation and Experimental Studies of the Heat Transfer Process in the Railway Disc Brake in High-Speed Trains

Author:

Kukulski Jacek1ORCID,Wolff Andrzej1,Walczak Sławomir2

Affiliation:

1. Faculty of Transport, Warsaw University of Technology, 00-662 Warsaw, Poland

2. Railway Research Institute, 04-275 Warsaw, Poland

Abstract

The effectiveness of railway brakes strongly depends on their thermal condition. A computer simulation and experimental investigations on a full-scale dynamometric stand were chosen as an adequate analysis of the heat transfer process in brakes. The article introduces a two-dimensional, axisymmetric numerical model of the tested disc brake. Boundary conditions related to the heat generated in the friction brake and heat transferred to the environment are also presented. The transient heat transfer problem was solved using the in-house computer program of the finite element method. The article presents simulations and experimental investigations of the intensive braking of a train with an initial high speed. Temperature responses of the disc brake on the friction surface and at other selected points are shown. In addition, a thermal imaging camera was used to assess the temperature distribution on the friction surface of the disc. The results of experimental and simulation tests were preliminarily compared. Similar maximum temperature values were obtained at the end of braking with a particular discrepancy in temperature responses during the analyzed process.

Funder

Warsaw University of Technology

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference49 articles.

1. Hot spotting in automotive friction systems;Anderson;Wear,1990

2. Distribution of thermal energy in the elements of the braking system of high-speed vehicles;Konowrocki;Pojazdy Szyn.,2014

3. Schuetz, T. (2009). Cooling Analysis of a Passenger Car Disk Brake, SAE. Paper 2009-01-3049.

4. Zienkiewicz, O.C., and Morgan, K. (1983). Finite Elements and Approximation, John Wiley & Sons, Inc.

5. Hetnarski, R.B. (2014). Encyclopedia of Thermal Stresses, Springer.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3